If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16+b^2=36
We move all terms to the left:
16+b^2-(36)=0
We add all the numbers together, and all the variables
b^2-20=0
a = 1; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·1·(-20)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*1}=\frac{0-4\sqrt{5}}{2} =-\frac{4\sqrt{5}}{2} =-2\sqrt{5} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*1}=\frac{0+4\sqrt{5}}{2} =\frac{4\sqrt{5}}{2} =2\sqrt{5} $
| 3x-12+x=7 | | 2x+5=4×+13 | | 2/3/3=x/1/2 | | 2/3/1/2=x/3 | | 2.25(-2+2x)+0.5=1.25(-5+5x) | | -11+y=-8 | | 2x-10°+4x-50°=180° | | 5x-4=2-3x | | C=4u | | 114=x-(-98) | | 42.5=9z−7 | | 50°-4x+2x-10°=180° | | -10x+8+12x=-2(x+7)-6* | | C=19p | | 72=v-4 | | -19+a=-8 | | 17=x-(-1) | | -44=26+p | | 3+7x-9+8x=54 | | v+(-5)=76 | | 104=r-(-32) | | 20-6x=20+7x+ | | -18+v=-81 | | r-15/4=r | | 5(2x+6)=−4(−5−2x)+3x* | | -3(-6w+3)-6w=3(w-3)-6 | | R-4r=15 | | 144=x-(-98) | | 4(w-6)=4 | | x+2x+2=32 | | -2k+19-3k=-1 | | 5=4x-x |